Phagocytic Receptor CED-1 Initiates a Signaling Pathway for Degrading Engulfed Apoptotic Cells
نویسندگان
چکیده
Apoptotic cells in animals are engulfed by phagocytic cells and subsequently degraded inside phagosomes. To study the mechanisms controlling the degradation of apoptotic cells, we developed time-lapse imaging protocols in developing Caenorhabditis elegans embryos and established the temporal order of multiple events during engulfment and phagosome maturation. These include sequential enrichment on phagocytic membranes of phagocytic receptor cell death abnormal 1 (CED-1), large GTPase dynamin (DYN-1), phosphatidylinositol 3-phosphate (PI(3)P), and the small GTPase RAB-7, as well as the incorporation of endosomes and lysosomes to phagosomes. Two parallel genetic pathways are known to control the engulfment of apoptotic cells in C. elegans. We found that null mutations in each pathway not only delay or block engulfment, but also delay the degradation of engulfed apoptotic cells. One of the pathways, composed of CED-1, the adaptor protein CED-6, and DYN-1, controls the rate of enrichment of PI(3)P and RAB-7 on phagosomal surfaces and the formation of phagolysosomes. We further identified an essential role of RAB-7 in promoting the recruitment and fusion of lysosomes to phagosomes. We propose that RAB-7 functions as a downstream effector of the CED-1 pathway to mediate phagolysosome formation. Our work suggests that phagocytic receptors, which were thought to act specifically in initiating engulfment, also control phagosome maturation through the sequential activation of multiple effectors such as dynamin, PI(3)P, and Rab GTPases.
منابع مشابه
Phagocytic receptor signaling regulates clathrin and epsin-mediated cytoskeletal remodeling during apoptotic cell engulfment in C. elegans
The engulfment and subsequent degradation of apoptotic cells by phagocytes is an evolutionarily conserved process that efficiently removes dying cells from animal bodies during development. Here, we report that clathrin heavy chain (CHC-1), a membrane coat protein well known for its role in receptor-mediated endocytosis, and its adaptor epsin (EPN-1) play crucial roles in removing apoptotic cel...
متن کاملThe human homologue of Caenorhabditis elegans CED-6 specifically promotes phagocytosis of apoptotic cells
A key feature of the process of programmed cell death (apoptosis) is the efficiency with which the dying cells are recognized and engulfed by phagocytes [1]. Apoptotic cells are rapidly cleared either by neighbouring cells acting as semi-professional phagocytes or by experts of the macrophage line, so that an inflammatory response is avoided [2]. The Caenorhabditis elegans gene ced-6 is require...
متن کاملEngulfment of Apoptotic Cells in C. elegans Is Mediated by Integrin α/SRC Signaling
BACKGROUND Engulfment of apoptotic cells is important for cellular homeostasis and the development of multicellular organisms. Previous studies have shown that more than one engulfment receptors act upstream of the conserved signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO for cell corpse removal in C. elegans, but little is known about their identities, except for PSR-1. RESULTS We sho...
متن کاملClathrin and AP2 Are Required for Phagocytic Receptor-Mediated Apoptotic Cell Clearance in Caenorhabditis elegans
Clathrin and the multi-subunit adaptor protein complex AP2 are central players in clathrin-mediated endocytosis by which the cell selectively internalizes surface materials. Here, we report the essential role of clathrin and AP2 in phagocytosis of apoptotic cells. In Caenorhabditis elegans, depletion of the clathrin heavy chain CHC-1 and individual components of AP2 led to a significant accumul...
متن کاملThree sorting nexins drive the degradation of apoptotic cells in response to PtdIns(3)P signaling
Apoptotic cells are swiftly engulfed by phagocytes and degraded inside phagosomes. Phagosome maturation requires phosphatidylinositol 3-phosphate [PtdIns(3)P], yet how PtdIns(3)P triggers phagosome maturation remains largely unknown. Through a genomewide PtdIns(3)P effector screen in the nematode Caenorhabditis elegans , we identified LST-4/SNX9, SNX-1, and SNX-6, three BAR domain-containing so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Biology
دوره 6 شماره
صفحات -
تاریخ انتشار 2008